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Motivation



Motivation

= Detecting Redundancy in Data

& Example 1: Redundant Features in Car Attributes
e Dataset: {z()}"_, where each () € R?
« Each 2! contains attributes of a different automobile (e.g., max speed, turn radius)
e Unknown to us:
e One feature x;: max speed in miles per hour
 Another feature x;: max speed in kilometers per hour
e These two features are almost linearly dependent
e Only minor differences due to rounding
e Therefore, data lies approximately on an n — 1 dimensional subspace

e Goal: Automatically detect and remove this redundancy



Motivation (cont’d)

= Detecting Redundancy in Data

@& Example 2: RC Helicopter Pilot Survey
e Data from a survey of RC helicopter pilots
e Two attributes:
e x1: pilot's skill level
e I9:enjoyment of flying
* RC helicopters are hard to fly = only those who enjoy it become skilled
e Strong correlation between x; and x5
e Data likely lies along a diagonal axis (denoted u1)
e Captures intrinsic “piloting karma”
e Only small noise lies off this axis

e Goal: Automatically compute this meaningful direction u;



Xy (enjoyment)

Illustration

Xy (skill)



Pre-processing



Intuition

" Features with larger scales (e.g., 1000) can dominate those with
smaller scales (e.g., 0.01)

" Normalization gives all features equal weight in the analysis

" |f different attributes are all on the same scale, rescaling may be
omitted



Normalization

" Subtracting the mean and dividing by the empirical standard

deviation
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Algorithm



Which basis to select?

Xy (enjoyment)
X
X

x; (skill)

" The direction on which the data approximately lies



Intuition

" The data has natural "spread” in some directions more than
others

" The major axis is the direction where data varies the most

" |f we project data onto this axis, we retain the most information
(variance)



Example

Data

Selection 1

Selection 2



Mathematical Formulation

= The length of the projection of x onto u is x "u

" Maximizing the variance of the projections is equivalent to
maximize
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Solution

s We want to maximize u! Ju

T

Subjectto:u'u =1

Lagrangian:
L(u,)) =u'Zu - A(ulu-1)

Set gradient to O:
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" The objective becomes finding the principal eigenvector of X



Extension to larger dimension

If we wish to project our data into a k-dimensional subspace (k < d)

Choose to be the top k eigenvectors of X

Due to that X is symmetric, u;’s will be orthogonal to each other

u;’s now form a new orthogonal basis for the data



Obtain new, low-dimension features

= Represent the data in the new basis

) = c R*

" PCA is also referred to as a dimensionality reduction algorithm

" The vectors uq,...,u; are called the first k principal components
of the data



Other interpretation of PCA

" |n this class: maximize the variance

= |n the homework:

= You will show that PCA minimizes the approximation error



Applications of PCA

PCs # 0O PCs # 10 PCs # 20

PC1

Compression Data preprocessing

https://glowingpython.blogspot.com/2011/07/pca-and-image-compression-with-numpy.html

https://ashutoshtripathi.com/2019/07/11/a-complete-guide-to-principal-component-analysis-pca-in-machine-learning/



https://glowingpython.blogspot.com/2011/07/pca-and-image-compression-with-numpy.html
https://ashutoshtripathi.com/2019/07/11/a-complete-guide-to-principal-component-analysis-pca-in-machine-learning/

Summary

" Principal components analysis (PCA)
= Motivation: remove redundancy in data

" Main idea: maximize the projection variance



