

MAT8034: Machine Learning

Principal Components Analysis

Fang Kong

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Part of slide credit: Stanford CS229

Motivation

Motivation

Detecting Redundancy in Data

🙈 Example 1: Redundant Features in Car Attributes

- Dataset: $\{x^{(i)}\}_{i=1}^n$, where each $x^{(i)} \in \mathbb{R}^d$
- Each $x^{(i)}$ contains attributes of a different automobile (e.g., max speed, turn radius)
- Unknown to us:
 - One feature x_i : max speed in **miles per hour**
 - Another feature x_j : max speed in kilometers per hour
- These two features are almost linearly dependent
 - Only minor differences due to rounding
- Therefore, data lies approximately on an n-1 dimensional subspace
- Goal: Automatically detect and remove this redundancy

Motivation (cont'd)

Detecting Redundancy in Data

Example 2: RC Helicopter Pilot Survey

- Data from a survey of RC helicopter pilots
- Two attributes:
 - x_1 : pilot's skill level
 - *x*₂: enjoyment of flying
- RC helicopters are hard to fly → only those who enjoy it become skilled
- Strong **correlation** between x_1 and x_2
- Data likely lies along a **diagonal axis** (denoted u_1)
 - Captures intrinsic "piloting karma"
 - Only small noise lies off this axis
- Goal: Automatically compute this meaningful direction u_1

Illustration

Pre-processing

Intuition

- Features with larger scales (e.g., 1000) can dominate those with smaller scales (e.g., 0.01)
- Normalization gives all features equal weight in the analysis

 If different attributes are all on the same scale, rescaling may be omitted

Normalization

Subtracting the mean and dividing by the empirical standard deviation

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{\sigma_j}$$

•
$$\mu_j = \frac{1}{n} \sum_{i=1}^n x_j^{(i)}$$

$$\sigma_j^2 = rac{1}{n} \sum_{i=1}^n (x_j^{(i)} - \mu_j)^2$$

Algorithm

Which basis to select?

The direction on which the data approximately lies

Intuition

- The data has natural "spread" in some directions more than others
- The major axis is the direction where data varies the most
- If we project data onto this axis, we retain the most information (variance)

Example

Mathematical Formulation

- The length of the projection of x onto u is $x^{\top}u$
- Maximizing the variance of the projections is equivalent to maximize

$$\frac{1}{n} \sum_{i=1}^{n} (x^{(i)^{T}} u)^{2} = \frac{1}{n} \sum_{i=1}^{n} u^{T} x^{(i)} x^{(i)^{T}} u$$
$$= u^{T} \left(\frac{1}{n} \sum_{i=1}^{n} x^{(i)} x^{(i)^{T}} \right) u$$

Solution

We want to maximize $\mathbf{u}^T \Sigma \mathbf{u}$ Subject to: $\mathbf{u}^T \mathbf{u} = 1$

Lagrangian:

$$\mathcal{L}(\mathbf{u},\lambda) = \mathbf{u}^T \Sigma \mathbf{u} - \lambda (\mathbf{u}^T \mathbf{u} - 1)$$

Set gradient to 0:

$$rac{\partial \mathcal{L}}{\partial \mathbf{u}} = 0 \Rightarrow \Sigma \mathbf{u} = \lambda \mathbf{u}$$

• The objective becomes finding the principal eigenvector of Σ

Extension to larger dimension

- If we wish to project our data into a k-dimensional subspace (k < d)</p>
- \bullet Choose to be the top k eigenvectors of Σ

- Due to that Σ is symmetric, u_i 's will be orthogonal to each other
- u_i's now form a new orthogonal basis for the data

Obtain new, low-dimension features

Represent the data in the new basis

$$y^{(i)} = \begin{bmatrix} u_1^T x^{(i)} \\ u_2^T x^{(i)} \\ \vdots \\ u_k^T x^{(i)} \end{bmatrix} \in \mathbb{R}^k$$

- PCA is also referred to as a dimensionality reduction algorithm
- The vectors u₁,..., u_k are called the first k principal components of the data

Other interpretation of PCA

- In this class: maximize the variance
- In the homework:
 - You will show that PCA minimizes the approximation error

Applications of PCA

Compression

Data preprocessing

https://glowingpython.blogspot.com/2011/07/pca-and-image-compression-with-numpy.html https://ashutoshtripathi.com/2019/07/11/a-complete-guide-to-principal-component-analysis-pca-in-machine-learning/

Summary

- Principal components analysis (PCA)
 - Motivation: remove redundancy in data
 - Main idea: maximize the projection variance